WE MATH

Mathematical ESS

Calculations...

Fetch calculators unless you have them already.

Simple Percentages

- You use the value divided by the total then multiply that answer by 100%
- ► E.g. 20 / 35 = 0.57143 × 100 = 57.<u>143</u>%
- Often more than I decimal place is not required so you should round to I decimal place.

Add all the data together and divide by the number of entries.

E.g. Class test results...we add all of your scores together 20 + 25 + 80 + 60 + 70 + 55 + 95 + 70 = <u>475</u>

$\frac{475}{8} = 59.375$ is the average score

Percentage Increase/Decrease

I. Starting Value – Finishing Value = change

- 2. Change/ Starting Value = fraction of change
- 3. Fraction of change $\times 100 = \%$ increase or decrease

Pyramids of Productivity, Biomass or Numbers

- Creating Scaled pyramids should be reliatively easy to complete.
- > The pyriamids should have 4 levels (4 trophic levels).
- Each of the different pyramids shows us something different.
- P.o. Numbers should have a wide base and narrow top although can be inverted.
- P.o. Biomass and Productivity should become narrower as it increases.

Practice

10000 500		Trophic Level 1 Trophic Level 2		Lake Species Ecosystem
180		Trophic Level 3		
10		Trophic Level 4		
Tree Species Ecosystem	I	Trophic		Level I
	80 T		Trophic Level 2	
	20		Trophic Level 3	
	5	Trophic Level 4		Level 4
3000		Trophic Level I		Transfer of Energy
300		Trophic Level 2		
30		Trophic Level 3		
3		Trophic Loval 4		

Licoln Index

Estimation of population size

 $nI \times n2$ N = m

- N = Total population of species in sample site.
- nI = number of animals captured
 on Day I.
- n2 = number of animals captured on Day 2.
- m = number of <u>re</u>captured animals on Day 2.

- 21 pheasant were caught, marked, and released. 23 were caught a second time, 5 of which had a marking. Estimate the population size.
- 2. I 5 elephants were caught, marked, and released. 8 were caught a second time, 7 of which had a marking. Estimate the population size.
- I 62 Japanese Beetles were caught, marked, and released.
 I 48 were caught a second time, 59 of which had a marking.
 Estimate the population size.
- 8 tigers were caught, marked, and released. 4 were caught a second time, 4 of which had a marking. Estimate the population size.

How would we "capture" each of these species in order to count them?

Simpson's Diversity Index

Simpson's Diversity measures the richness of species.

$D = \frac{N(N-I)}{\Sigma n(n-I)}$

- D = Diversity Index
- N = Total number of organisms of all species.
- n = number of individual species divided into species
- $\Sigma = \text{sum of}$

Species	Number (n)	n(n-1)
Sea holly	2	
Sand couch	8	
Sea bindweed	1	
Sporobolus pungens	1	
Echinophora spinosa	3	
Total		
	N =	n(n-1) = 64

Σ