WED MATH

Mathematical ESS

Calculations...
Fetch calculators unless you have them already.

Simple Percentages

- You use the value divided by the total then multiply that answer by 100\%
- E.g. $20 / 35=0.57143 \times 100=57.143 \%$
- Often more than I decimal place is not required so you should round to I decimal place.

Simple Average (Mean)

Add all the data together and divide by the number of entries.
E.g. Class test results...we add all of your scores together $20+25+80+60+70+55+95+70=\underline{475}$
$\frac{475}{8}$
$=59.375$ is the average score

Percentage Increase/Decrease

।. Starting Value - Finishing Value $=$ change
2. Change/ Starting Value $=$ fraction of change
3. Fraction of change $\times 100=\%$ increase or decrease

Pyramids of Productivity, Biomass or Numbers

- Creating Scaled pyramids should be reliatively easy to complete.
- The pyriamids should have 4 levels (4 trophic levels).
- Each of the different pyramids shows us something different.
- P.o. Numbers should have a wide base and narrow top although can be inverted.
- P.o. Biomass and Productivity should become narrower as it increases.

Practice

I0000		Trophic Level I	
500		Trophic Level 2	
I80	Trophic Level 3		
Lake Species			
Ecosystem			

3000	Trophic Level I	
300	Trophic Level 2	
30	Trophic Level 3	
3	Trophic Level 4	

Licoln Index

Estimation of population size

$$
\mathrm{N}=\frac{\mathrm{n} 1 \times \mathrm{n} 2}{\mathrm{~m}}
$$

$\mathrm{N}=$ Total population of species in sample site.
$\mathrm{nI}=$ number of animals captured on Day I.
n2 = number of animals captured on Day 2.
$\mathrm{m}=$ number of recaptured animals on Day 2.
I. 21 pheasant were caught, marked, and released. 23 were caught a second time, 5 of which had a marking. Estimate the population size.
2. I5 elephants were caught, marked, and released. 8 were caught a second time, 7 of which had a marking. Estimate the population size.
3. 162 Japanese Beetles were caught, marked, and released. 148 were caught a second time, 59 of which had a marking. Estimate the population size.
4. 8 tigers were caught, marked, and released. 4 were caught a second time, 4 of which had a marking. Estimate the population size.

How would we "capture" each of these species in order to count them?

Simpson's Diversity Index

Simpson's Diversity measures the richness of species.
$\mathrm{N}(\mathrm{N}-\mathrm{I})$
$D=$

$$
\sum n(n-I)
$$

D = Diversity Index
$\mathrm{N}=$ Total number of organisms of all species.
$\mathrm{n}=$ number of individual species divided into species
$\Sigma=$ sum of

Species	Number (n)	n(n-1)	
Sea holly	2		
Sand couch	8		
Sea bindweed	1		
Sporobolus pungens	1		
Echinophora spinosa	3		
Total	$\mathbf{N}=$		

